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Electrophoresis simulations using
Chebyshev pseudo-spectral method on a
moving mesh

We present the implementation and demonstration of the Chebyshev pseudo-spectral
method coupled with an adaptive mesh method for performing fast and highly accu-
rate electrophoresis simulations. The Chebyshev pseudo-spectral method offers higher
numerical accuracy than all other finite difference methods and is applicable for simu-
lating all electrophoresis techniques in channels with open or closed boundaries. To im-
prove the computational efficiency, we use a novel moving mesh scheme that clusters the
grid points in the regions with poor numerical resolution. We demonstrate the applica-
tion of the Chebyshev pseudo-spectral method on amovingmesh for simulating nonlinear
electrophoretic processes through examples of isotachophoresis (ITP), isoelectric focusing
(IEF), and electromigration-dispersion in capillary zone electrophoresis (CZE) at current
densities as high as 1000 A/m2. We also show the efficacy of our moving mesh method
over existing methods that cluster the grid points in the regions with large concentra-
tion gradients. We have integrated the adaptive Chebyshev pseudo-spectral method in the
open-source SPYCE simulator and verified its implementation with other electrophore-
sis simulators.
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1 Introduction

Numerical simulations have found increasing utility in de-
sign, optimization, and understanding the dynamics of elec-
trophoresis techniques. With the advances in mathematical
modeling of electrophoretic phenomena, numerical meth-
ods, and computing power over the past four decades [1,
2], realistic simulations of electrophoresis techniques such
as capillary zone electrophoresis (CZE) [3], isotachophore-
sis (ITP) [4], transient-ITP (t-ITP) [5], isoelectric focusing
(IEF) [6], and field amplified sample stacking (FASS) [7] can
now be performed on personal computers. Moreover, the
availability of open-source electrophoresis simulators such
as SIMUL [8], SPRESSO [9], and SPYCE [10] and commer-
cial multiphysics simulation packages such as COMSOL [11]
have popularized the use of simulations for research and
teaching activities.
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Electrophoresis simulations are based on solving cou-
pled,mass conservation equations for ionic species in an elec-
trolyte. These conservation equations include mass-fluxes
due to electromigration, bulk advection, and molecular dif-
fusion, and also account for acid–base equilibria. The species
transport equations for electrophoretic transport of weak elec-
trolyte species were originally formulated by Bier et al. [12]
and Saville and Palusinski [13]. All electrophoresis simula-
tors are based on the same basic mathematical model, usu-
ally simplified to a one-dimensional (1D) setting. However,
over time various improvements to this mathematical model
have been made and incorporated in different simulators,
such as ionic-strength dependence on electrophoretic mobil-
ity [14], modeling of protein mobility [15], Taylor–Aris dis-
persion [9, 16], and axially varying channel cross-section [16].
The governing equations for electrophoretic transport can be
solved numerically using various approaches such as finite-
difference, finite-volume, and finite-element methods. These
simulation approaches and progress in modeling of elec-
trophoresis techniques have been reviewed in detail by Thor-
mann et al. [1, 2].
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A majority of electrophoresis simulations are based on
spatial-discretization schemes having second-order accuracy.
In particular, electrophoresis simulators such as SIMUL [8]
and GENTRANS [17] are based on the second-order cen-
tral differencing scheme. The SPRESSO simulator [9, 16]
offers a choice between the sixth-order compact finite dif-
ference scheme and other first- and second-order accurate
spatial-discretization schemes. These finite-difference and
finite-volume schemes are based on locally approximating
the spatially varying physical quantities using low-order poly-
nomials. Recently, we demonstrated the use of the Fourier
pseudo-spectral method for performing high-resolution elec-
trophoresis simulations, and based on it, we developed a new
simulator named SYPCE [10]. Unlike the finite-difference
and finite-volume methods, the pseudo-spectral methods
offer exponential convergence as they are based on global
representations of a function using the Fourier series or
high-order polynomials [18, 19]. As shown by Fornberg [20],
the pseudo-spectral methods can be considered as the limit
of finite-difference methods with infinite order of accu-
racy. Consequently, pseudo-spectral methods yield accurate
numerical solutions on coarser computational grids and
correspondingly require lower computational time than
other spatial-discretization schemes.

Previously, we reported the use of the Fourier pseudo-
spectral method for performing fast and accurate elec-
trophoresis simulations and demonstrated its advantages
over finite-difference methods in terms of speed and ac-
curacy [10]. Because the Fourier pseudo-spectral method is
based on Fourier series representation of spatially varying
physical quantities, it is applicable for performing simula-
tions only on a periodic domain. Despite the requirement
of periodicity, we showed that the Fourier pseudo-spectral
method could be used to simulate a variety of electrophoresis
processes, such as CZE, FASS, oscillating electrolytes [21, 22],
and t-ITP, as the conditions at the left and the right channel
(or computational domain) boundaries in these electrophore-
sis techniques are identical. However, several electrophoresis
techniques such as ITP and IEF cannot be simulated on a
periodic domain, as these techniques involve different ionic
species on the channel boundaries.

In the current work, we show that nonperiodic elec-
trophoresis problems can be simulated using the pseudo-
spectral method based on Chebyshev polynomials to repre-
sent the spatially varying quantities, instead of the Fourier
series. To this end, we present the implementation of
the Chebyshev pseudo-spectral method for simulating elec-
trophoretic processes and demonstrate its applicability for
simulating ITP, IEF, and other electrophoresis techniques.
The Chebyshev pseudo-spectral method overcomes the lim-
itations of the Fourier pseudo-spectral method and is appli-
cable for simulating all practical electrophoresis techniques,
irrespective of whether the channel boundaries are open or
closed. To improve the stability and the computational speed
of the numerical method, we also incorporate amovingmesh
method in our simulations to dynamically cluster the grid
points in the regions prone to numerical errors. The Cheby-

shev pseudo-spectral method coupled with the moving mesh
method yields robust and accurate numerical simulations
of electrophoresis techniques with sharp concentration gra-
dients, with fewer grid points and correspondingly lower
computational time. Based on this numerical scheme, we
have thoroughly updated the open-source SPYCE (Pseudo-
spectral Python Code for Electrophoresis) simulator. Con-
sequently, the updated SPYCE simulator is no longer lim-
ited to simulations on a periodic domain and can simulate
all 1D electrophoresis techniques. SPYCE is available for
free download at http://web.iitd.ac.in/∼bahga/SPYCE.html
along with sample input files for simulating various elec-
trophoresis techniques.

2 Materials and methods

2.1 Mathematical model

We consider electrophoretic transport of ionic species in an
electrolyte filled in a uniform cross-section capillary, in the
absence of bulk fluid flow due to pressure gradients and
electroosmotic slip. We can model the species transport in
such electrophoretic systems with a set of coupled 1D mass-
conservation equations accounting for electromigration and
diffusive fluxes,

∂ci
∂t

+ ∂

∂x
(μiciE ) = ∂2

∂x2
(Dici ), i = 1, 2, . . . ,M, (1)

Here, ci denotes the total (analytical) concentration of species
family i, E the local electric field, μi the effective mobility, Di

the effective diffusivity, and M the total number of species
families in the electrolyte. The derivation of these governing
equations has been discussed in detail by Saville and Palusin-
ski [13] and Bercovici et al. [9], and we briefly summarize the
procedure here. The derivation of these equations involves
formulating individual mass conservation equations for dif-
ferent ionization states of each species family, incorporating
electromigration and diffusion fluxes and source terms due
to acid–base dissociation reactions. After that, the transport
equations for all ionization states of a particular species
family are summed up to arrive at Equation (1) in terms of
the total concentration of the species family. Because the
mass of every species family is conserved, the source terms
due to dissociation–recombination reactions do not appear
in Equation (1). Moreover, because acid–base dissociation
reactions occur at a significantly shorter timescale than the
timescale for electromigration and diffusion, the fractions of
a species family in various ionization states can be calculated
assuming local chemical equilibrium. The effective mobility
μi and effective diffusivityDi in Equation (1) are the weighted
averages of mobilities and diffusivities of various ionization
states with ionization fractions as the weights. Therefore,
knowing the total concentrations of all the species families,
acid–base equilibrium equations are solved along with local
electroneutrality condition to determine the pH and the
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ionization fractions, using which effective mobilities and
diffusivities are calculated.

The species transport equations, Equation (1), are cou-
pled through the local electric field E , which depends on the
local electrical conductivity σ and thus on concentrations of
all species. For a constant current density j, the local electric
field is given by

E = 1
σ

(
j + ∂S

∂x

)
, (2)

where ∂S/∂x is the diffusive current density [9]. The conduc-
tivity and diffusive current density depend on the species con-
centrations and local pH, and their expressions are provided
in Bercovici et al. [9]. The overallmathematicalmodel for elec-
trophoresis consists of M coupled partial differential equa-
tions for species transport and algebraic equations for local
acid-base equilibrium and electroneutrality.

2.2 Chebyshev pseudo-spectral method

We solve the governing equations, Equations (1) and (2), us-
ing the Chebyshev pseudo-spectral method [18, 19]. In this
numerical method, a physical quantity f is approximated
on a computational domain −1 ≤ ξ ≤ 1 by a finite series of
Chebyshev polynomials as

f (ξ, t ) =
N∑
n=0

an(t )Tn(ξ ), (3)

where Tn(ξ ) denotes the n-th Chebyshev polynomial. The first
few Chebyshev polynomials are

T0 = 1, T1 = ξ, T2 = 2ξ 2 − 1, T3 = 4ξ 3 − 3ξ, . . . . (4)

In general, the Chebyshev polynomials can be generated us-
ing the following recursive relation:

Tn+1(ξ )+ Tn−1(ξ ) = 2ξTn(ξ ), n ≥ 1. (5)

In addition, a one-to-one mapping between the computa-
tional coordinate ξ and the physical coordinate x varying over
the length of the capillary is defined. This mapping can even
be time-varying, x = x(ξ, t ) while using a dynamically adapt-
ing mesh, as discussed later in Section 2.3.

The Chebyshev polynomials have an important property
that they can be expressed as simple cosines through the
transformation ξ = cos θ , which yields Tn(cos θ ) = cos nθ .
Therefore, the linear combination of Chebyshev polynomials
in Equation (3) can be expressed as a trigonometric series,
using this representation of a series of Chebyshev polyno-
mials, the derivative df /dx in the physical domain can be
calculated as,

f (ξ (θ ), t ) =
N∑
n=0

an(t ) cos nθ,

where θ = cos−1 ξ, 0 ≤ θ ≤ π. (6)

df
dx

= 1
dx/dξ

df
dθ

dθ
dξ

= 1

dx/dξ
√
1− ξ 2

df
dθ

. (7)

Here, dx/dξ is known from the mapping between the
physical and computational coordinates. The derivative df /dθ
can be efficiently computed using the Fast Fourier Transform
(FFT) algorithm from the discrete values of f at varying θ ,
similar to that in the Fourier pseudo-spectral method [18].
To use FFT to compute the derivative df /dθ numerically, the
computational domain −1 ≤ ξ ≤ 1 is discretized using the
Chebyshev points,

ξ j = cos( jπ/N ), j = 0, 1, . . . ,N, (8)

which correspond to non-uniformly spaced grid points along
ξ coordinate, but equispaced grid points θ j = jπ/N along the
θ -coordinate. After computing df /dθ , the derivative in phys-
ical space df /dx can be calculated using Equation (7) with
special formulae for the endpoints, ξ = ±1. The complete al-
gorithm for Chebyshev spectral differentiation has been de-
scribed by Trefethen [18], and we adopted the same algorithm
in the current work.

2.3 Moving mesh method

The Chebyshev grid points given by Equation (8) are clus-
tered near the boundaries, and the grid density is the low-
est in the middle of the computational domain. Such a grid
is not only unsuitable for resolving the concentration gradi-
ents within the computational domain but also offers severe
time-step restrictions for time-integration of the discretized
transport equations [19, 23]. One approach to overcome these
issues is to define a fixed mapping x = x(ξ ) to distribute the
grid pointsmore evenly over the physical domain. A common
choice for such a mapping is the arcsine map introduced by
Kosloff and Tal-Ezer [23],

x = L
2

(
1+ arcsin(βξ )

arcsinβ

)
, (9)

where 0 ≤ β < 1, 0 ≤ x ≤ L for −1 ≤ ξ ≤ 1, and L is the
length of the physical domain, which in the current case is
the channel or column. The grid spacing in the physical do-
main becomes increasingly uniform as β → 1, for example,
by choosing β = 0.999.

The arcsinemap given by Equation (9) is suitable for sim-
ulating electrophoretic processes with relatively small con-
centration gradients or for processes, such as IEF, where
a large number of concentration gradients are distributed
throughout the physical domain. However, certain elec-
trophoretic processes such as ITP and electromigration-
dispersion in CZE are characterized by sharp concentration
gradients localized at a few locations, while the species con-
centrations vary gradually elsewhere. Such electrophoresis
problems can be simulated more efficiently by dynamically
adapting the grid by drawing the grid points from regions
with low concentration gradients and clustering them in the
regions with high concentration gradients [9]. To this end,
we define a time-dependent mapping x = x(ξ, t ) between the
physical coordinate x and the computational coordinate ξ . In
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themoving grid framework, the time-derivative term in Equa-
tion (1) has an additional term due to the grid movement,

∂

∂t
ci(x, t ) = ∂

∂t
ci(ξ, t )− xt

xξ

∂

∂ξ
ci(ξ, t ), (10)

where xt = ∂x/∂t and xξ = ∂x/∂ξ . Therefore, the governing
equations, Equations (1) and (2), get modified to

∂ci
∂t

− xt
xξ

∂ci
∂ξ

+ 1
xξ

∂

∂ξ
(μiciE ) = 1

xξ

∂

∂ξ

(
1
xξ

∂

∂ξ
(Dici )

)
,

i = 1, 2, . . . ,M, (11)

and

E = 1
σ

(
j + 1

xξ

∂S
∂ξ

)
. (12)

To obtain the time-dependent mapping x = x(ξ, t ), we
adopt themovingmeshmethod for pseudo-spectralmethods,
described by Subich [24]. In this method, the time-varying
mapping x = x(ξ, t ) is determined by solving the following
partial differential equation:

∂2

∂ξ 2

(
∂

∂t
x(ξ, t )

)
= − 1

τ

∂

∂ξ

(√
1− ξ 2M({ci(x, t )}) ∂

∂ξ
x(ξ, t )

)
,

(13)

subject to the boundary conditions x(−1, t ) = 0 and x(1, t ) =
L. In this equation, τ is a positive constant that governs the
speed of grid adaptation. A lower value of τ leads to faster
grid adaptation. In Equation (13),M({ci(x, t )}) is the so-called
monitor function that depends on the species concentrations
and governs the clustering of the grid points in the physi-
cal domain. The grid points cluster in the regions where the
monitor functionM takes on higher values, and the grid den-
sity reduces in the regions having lower values ofM.

Typically, in moving mesh methods, the monitor func-
tion is chosen as a function of the spatial gradient of the
physical quantity (concentration gradient in the current case).
Consequently, the grid points move from the regions with
low gradients and cluster at large gradients [25, 26]. However,
in the current work, we follow the approach of Subich [24] to
construct a monitor function that clusters the grid points in
the regions with poorly resolved numerical solution. To con-
struct such a monitor function, we first use a high-pass filter
defined by Subich [24] to obtain the high spatial-frequency
component ci,high(x(ξ ), t ) of species concentrations ci(x(ξ ), t ).
At every grid point, the maximum value of ci,high(x(ξ ), t )
among all species is taken, and the monitor function is then
defined as

M({ci(x, t )}) = δ +max
i

ci,high(x(ξ ), t ). (14)

The parameter δ governs the relative importance given to re-
gions with high spatial-frequency content in the mesh adap-
tation process. Lower values of δ lead to higher grid density in
the regions with poorly resolved solution, that is, where the
solution has high-frequency content. On the other hand, high
values of δ yield almost equispaced grid points in the physical
domain. In practice, the monitor function defined by Equa-
tion (14) is normalized by its maximum value, although its

absolute value does not affect the grid density. The resulting
normalized monitor function is highly oscillatory, and there-
fore before using it in Equation (13), we smooth the monitor
function using a weighted moving average filter with a trian-
gular weighting function. This smoothing process can be im-
plemented efficiently through FFT-based convolution of the
monitor function with a triangular function. In the current
work, we used a triangular weighting function spanning 21
grid points for smoothing the monitor function.

The monitor function described above is more robust in
adapting the grid than the monitor functions based on con-
centration gradients [24]. In particular, this monitor function
avoids unnecessary clustering of grid points in the regions
with well-resolved concentration gradients. Knowing the
monitor function M({ci(x, t )}), we solve the governing equa-
tion, Equation (13), for themapping x = x(ξ, t ) using the arc-
sinemap given by Equation (9) as the initial condition.Weuse
the Chebyshev spectral differentiation to compute the spatial
derivatives in Equation (13), as described by Subich [24].

2.4 Boundary conditions, time-integration, filtering

The governing equations for species concentration, Equa-
tions (11) and (12), and the moving mesh Equation (13)
are semi-discretized by computing the spatial derivatives
using Chebyshev spectral differentiation. For electrophoresis
problems with fixed concentrations at the channel bound-
aries, the time-derivative of species concentrations at the
domain boundaries are set to zero. On the other hand, to
simulate electrophoretic transport in a domain with im-
penetrable boundaries, such as in IEF in a closed-column,
the mass-flux at the boundaries is set to zero. The ODEs
resulting from semi-discretization of species concentrations
and the mapping x(ξ ) at all the grid points are solved using
the fourth-order Runge–Kutta–Fehlberg (RKF45) adaptive
time-stepping scheme. The species concentrations from
the previous time-step are used once to calculate the pH
and effective mobilities and diffusivities at each time-step.
Similarly, the grid adaptation speed ∂x/∂t is also calculated
only once for the time-step. The same values of pH, effective
mobilities and diffusivities, and grid adaptation speed are
used throughout the time-step.

The nonlinear terms in Equation (11) lead to aliasing
errors due to the multiplication of the truncated series rep-
resentations of the concentrations [19]. To avoid aliasing er-
rors, we use the Fourier smoothing method of Hou and
Li [27], wherein the discrete Fourier transform coefficients
of species concentrations are multiplied with a weighting
function to attenuate the high-wavenumber components.
Similarly, the mapping between the physical and computa-
tional coordinates x(ξ, t ) computed using the moving mesh
method may not be strictly monotonic in certain regions
and hence requires smoothing. Therefore, at the end of
every time-step of time-integration, the resulting map x =
x(ξ ) is smoothed, while preserving the boundary conditions
x(−1) = 0 and x(1) = L. In the current work, we perform
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boundary-preserving smoothing of x(ξ ) by solving

x̄ − ε
d2x̄
dξ 2

= x(ξ ), (15)

for x̄ subject to the boundary conditions x̄(−1) = 0 and
x̄(1) = L. In this equation, x̄ is the smoothed mapping and
ε is the smoothing parameter. Note that, x̄ → x as ε → 0. We
also solve this boundary value problem using the Chebyshev
spectral method [18] using ε = 10−7.

We implemented the numerical algorithm discussed
above in the SPYCE simulator, developed using the Python
3.0 programming language with NumPy and SciPy libraries.
We verified the numerical implementation by comparing
the simulation results for various electrophoresis techniques
with SPRESSO, SIMUL, and COMSOL simulators. All sim-
ulations were performed on Intel i7 3.6 GHz, 16 GB RAM
personal computer with Linux (Ubuntu) operating system.

3 Results and discussion

The adaptive Chebyshev pseudo-spectral method discussed
in Section 2 is suitable for simulating all 1D electrophore-
sis techniques. The advantages of the Chebyshev pseudo-
spectral method over lower-order methods are well docu-
mented in the literature [18, 19]. The focus of this section is
to demonstrate the application of this method for performing
electrophoresis simulations on a nonperiodic domain, which
otherwise cannot be performed using the Fourier pseudo-
spectral method [10]. Here, we consider two test cases of ITP
and IEF, which correspond to different boundary conditions
for species concentrations at the channel ends. ITP involves
fixed species concentrations at the channel ends, whereas
in IEF the channel boundaries are impenetrable when per-
formed in a closed column. ITP and IEF serve as challenging
simulation test cases as they both involve sharp concentra-
tion gradients. Moreover, the ITP simulation case helps in
demonstrating the use of the moving mesh method in sim-
ulating sharp propagating concentration gradients with rela-
tively less number of grid points. In contrast to ITP, the IEF
simulation is a test case where the adaptive grid is of little ben-
efit as the concentration gradients are distributed through-
out the domain. We also verify the numerical implemen-
tation of the Chebyshev pseudo-spectral method in SYPCE
by comparing the ITP simulation with that using SPRESSO
and IEF simulation with the predictions of COMSOL Multi-
physics package. In addition to the simulations of ITP and
IEF presented here, in the Supporting Information, we pro-
vide a detailed comparison of accuracy and computational
time of SPYCE with SIMUL, SPRESSO, and COMSOL simu-
lators based on simulations of CZE. We show that the Cheby-
shev pseudo-spectral method implemented in SPYCE has
significantly higher numerical accuracy than the numerical
methods incorporated in other electrophoresis simulators.
Because SPYCE has higher accuracy for coarser computa-
tional grids, it takes smaller computational time than all other
electrophoresis simulators to achieve the same accuracy.

3.1 Isotachophoresis (ITP)

We begin by verifying the numerical method and its imple-
mentation in SPYCE with SPRESSO’s sixth-order compact
adaptive scheme, using an example of isotachophoretic pre-
concentration and separation of four analytes. Simulations
in SPYCE and SPRESSO were performed in a 40 mm long
physical domain discretized with 257 grid points. The LE ion
was 100 mM chloride ion, the TE ion was 100 mM HEPES,
and the background counter-ion was 150 mM TRIS. Four an-
alytes, namely, malonic acid (A1), acetic acid (A2), lactic acid
(A3), and cacodylic acid (A4) were injected between the LE
and TE zones in the form of diffused plugs with a maximum
concentration of 20 mM each. The electrophoretic mobilities
μ and acid dissociation constants (pKa) for various chemi-
cal species used in this simulation are tabulated in Table S1.
The simulation was performed for a constant current density
of 1019 A/m2, corresponding to a current of 2 µA through
a 50 µm diameter circular capillary. For this simulation, we
used themovingmesh to cluster the grid points in the regions
with poorly resolved numerical solution. The parameters for
the moving mesh method were: β = 1− 10−5, δ = 10−3cmax,
and τ = 5× 10−3τ0, where τ0 is the reference time-scale de-
fined as τ0 = LcmaxF/| j|. Here, cmax denotes the maximum
species concentration at the initial state and F is the Faraday
constant. The adaptive grid parameters of SPRESSO, namely
the adaptive grid speed and the clustering level, were both
chosen to be one to ensure a non-oscillatory solution. The
computational times required by SPYCE and SPRESSO for
this problem were about 15 and 30 s, respectively.

Figure 1 shows the comparison of simulation predic-
tions using the Chebyshev pseudo-spectral method imple-
mented in SPYCE and the sixth-order compact scheme of
SPRESSO. Initially (t = 0 s), the four analytes with equal con-
centrations are injected between the LE and TE zones. Upon
application of electric field, the analytes begin to separate
into distinct zones. At intermediate times (t = 150 s), sepa-
ration and preconcentration is characterized by mixed ana-
lyte zones. At later times (t = 300 s), the analytes separate
into purified plateau-shaped zones. As shown in Figure 1,
the spatio-temporal variation of the species concentrations
predicted by the Chebyshev pseudo-spectral methodmatches
with that predicted by the experimentally validated SPRESSO
simulator, thereby verifying the implementation of the nu-
merical method.

Next, we compare the performance of the grid adapta-
tion scheme in SPYCE, which is based on clustering the grid
points in the regions with poor numerical resolution with
that in SPRESSO wherein grid points are clustered in the re-
gions with large concentration gradients. In Figure 2, we plot
the spatio-temporal evolution of the grid points and electrical
conductivity on a t versus x diagram. The background color
corresponds to the electrical conductivity, and the lines corre-
spond to the position of grid points in the physical domain.
For clarity, we have plotted every second grid point in Fig-
ure 2. The spatio-temporal evolution of conductivity predicted
by SPYCE is same as that predicted by SPRESSO. Moreover,

© 2021 Wiley-VCH GmbH www.electrophoresis-journal.com



6 S. S. Bahga and P. Gupta Electrophoresis 2021, 0, 1–8

Figure 1. Simulation of ITP preconcentration and separation of

four analytes using the Chebyshev pseudo-spectral method with

moving mesh and its verification with the sixth-order compact

adaptive scheme of SPRESSO. The concentrations predicted by

the Chebyshev pseudo-spectral method agree well with those

simulated by SPRESSO, verifying the implementation of the nu-

merical scheme in SPYCE.

the grid points cluster at the locations of sharp concentration
gradients separating analyte zones in both the simulations.
However, there are notable differences in the grid movement
in the two simulations. SPRESSO’s grid adaptation scheme,
based on a gradient-basedmonitor function, also clusters grid
points at the locations with smooth concentration gradients.
For example, Figure 2B shows that the gradient-based mon-
itor function of SPRESSO leads to clustering of grid points
at x = 5, 10 mm, where the TE concentration adapts from
its initial value upon displacing the analytes. In contrast, the
monitor function based on the high-pass filter in SPYCE does
not cluster the grid points in such regions, as the numerical
solution there is well-resolved despite low grid density. Over-
all, a comparison of gridmovement in Figure 2A and B shows
that the numerical scheme described here requires lesser
grid movement compared with that required by SPRESSO
to yield a non-oscillatory solution. Besides the difference in
the monitor functions, lesser grid movement in the simu-
lation using SPYCE is also because the Chebyshev pseudo-
spectral method can better resolve the high-wavenumber fea-
tures than the sixth-order compact scheme of SPRESSO.

3.2 Isoelectric focusing

Next, we present a simulation of IEF, which involves sep-
aration of amphoteric species based on the differences in
their isoelectric points (pI). We also validate the predictions

A

B

Figure 2. Comparison of conductivity field and grid adaptation

in SPYCE and SPRESSO for the ITP simulation shown in Fig. 1.

The conductivity field, shown in background color, predicted by

SPYCE agrees with that obtained from SPRESSO. (A) The grid

points in SPYCE are made to cluster in the regions with poor nu-

merical resolution, whereas (B) in SPRESSO the grid density in-

creases in the regions with concentration gradients. The moving

mesh method of SPYCE clusters grid points only in the regions

where higher grid density is required to improve the solution ac-

curacy. On the other hand, SPRESSO’s adaptive grid scheme un-

necessarily clusters grid points even in the regions with gradual

concentration gradients, such as at x = 5,10 mm.

of SPYCE with those using COMSOL’s electrophoretic trans-
port interface, described in detail by Mikkonen et al. [11]. We
considered 21 hypothetical carrier ampholytes with pI val-
ues ranging between 4 and 9 (�pI = 0.25) and �pKa = 2 for
each ampholyte. All the ampholytes were assumed to have the
same absolute value of mobility, μi,±1 = ±30× 10−9 m2/Vs.
The simulation was performed for a 20 mm long, closed col-
umn with impermeable ends. The column was discretized
with 1025 grid points in SPYCE. Because IEF involves many
concentration gradients distributed throughout the column,
the moving mesh does not help in improving the computa-
tional speed. Therefore, this simulation was performed on a
stationary and almost uniform grid using the arcsine map
given by Equation (9) with β = 1− 10−7. The same condi-
tions were used to perform finite element method (FEM)
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A

B

Figure 3. Time-evolution of the distribution of ampholyte con-

centrations and pH in IEF simulated using the Chebyshev pseudo-

spectral method in SPYCE and FEM in COMSOL. The simulation

was performed in a closed column to demonstrate the compati-

bility of the numerical method for impenetrable boundaries. (A)

Initially, the 21model ampholytes are distributed uniformly in the

column. The application of electric field causes the analytes to

separate into distinct zones ordered by their pI. (B) Initially, uni-

form pH of 6.5 gives way to a steady, step variation of pH upon

application of the electric field. The predictions of SPYCE agree

well with those of COMSOL.

based simulations in COMSOL, except that that column was
discretized into 3075 grid points in COMSOL. These FEM
simulations used linear and quadratic shape functions for
concentrations and electric potential, respectively, and back-
ward difference formula (BDF) based time integration.

Initially (t = 0), all the ampholytes weremixed uniformly
in the column, each having an initial concentration of 2.5mM
as shown in Figure 3A. This initial condition corresponds to
a uniform pH of 6.5, as shown in Fig. 3B. For t > 0, the cur-
rent density was ramped up over 0 s to 12 s to a maximum
value of 509 A/m2 and thereafter held constant till t = 150 s.

Figure 3A and B shows the spatio-temporal evolution of the
ampholyte concentrations and the pH, respectively. At the ini-
tial pH of 6.5, ampholytes having pI between 4 and 6.25 are
positively charged, the ampholyte with pI = 6.5 is electrically
neutral, while those with pI between 6.75 and 9 are negatively
charged. Therefore, the ampholytes with pI between 4 and
6.25 migrate toward the anode, while those with pI between
6.75 and 9 migrate toward the cathode. Simultaneously, the
local pH adapts to balance the charge due to the movement
of ampholytes. Over time, these ampholytes accumulate at
the respective ends in the form of separate zones ordered
by their pI, as shown in Figure 3A. At the steady-state, the
pH in the individual zones is equal to the pI of the respec-
tive ampholyte (Fig. 3B), and consequently the ampholytes
are neutrally charged in their respective zones away from the
zone boundaries [28]. Figure 3 shows that the spatio-temporal
evolution of species concentrations and the pH predicted by
SPYCE agree with the predictions of COMSOL. Because of
the large number of grid points and species in this IEF sim-
ulation, SPYCE took 16 min to complete the simulation.

The results of ITP and IEF simulations in Figures 1
and 3, and CZE simulations in the Supporting Information
demonstrate the ability of the adaptive Chebyshev pseudo-
spectral method to accurately simulate electrophoretic phe-
nomena in nonperiodic domains with open and closed
boundaries. We note that the Chebyshev pseudo-spectral
method is also applicable for simulating other electrophoretic
processes such as FASS, t-ITP, and oscillating electrolytes
whose simulations we presented earlier on a periodic do-
main using the Fourier pseudo-spectral method [10]. The in-
put files for performing ITP, IEF, and CZE simulations pre-
sented here, and those for performing simulations of FASS,
t-ITP, and oscillating electrolytes are available along with the
SPYCE package.

4 Concluding remarks

We have demonstrated the ability of Chebyshev pseudo-
spectral method coupled with a moving mesh scheme to
perform high-resolution numerical simulations of nonlinear
electrophoretic processes on a nonperiodic domain. Unlike
the Fourier pseudo-spectral method, implemented earlier in
the SPYCE simulator, this numerical method is not restricted
to a periodic domain. Consequently, the adaptive Chebyshev
pseudo-spectral method is applicable for simulating a wider
variety of electrophoresis techniques in channels with open
and closed boundaries. Moreover, this method retains the
advantages of the Fourier pseudo-spectral method, including
high accuracy and computationally efficient implementation
based on FFT. Further improvement in computational effi-
ciency is achieved using a novel movingmesh scheme, which
clusters the grid points in the regions with poor numerical
resolution. This grid-adaptation approach allows simula-
tions of electrophoretic processes in long domains with
relatively fewer grid points. Moreover, this grid-adaptation
approach avoids unnecessary clustering of grid points in
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regions with well-resolved concentration gradients, unlike
the schemes based on clustering the grid points in regions
with concentration gradients.

Based on the examples of ITP, IEF, and CZE, we have
demonstrated the applicability of the adaptive Chebyshev
pseudo-spectral method for simulating electrophoresis tech-
niques at current densities as high as 1000 A/m2. We have
implemented this scheme in the SPYCE simulator and veri-
fied it with the existing electrophoresis simulators, including
SPRESSO, SIMUL, and COMSOL’s electrophoretic transport
interface. The updated SPYCE simulator can now simulate
all 1D electrophoresis processes, including ITP, t-ITP, IEF,
CZE, FASS, and oscillating electrolytes with high accuracy
and low computational time. The Chebyshev pseudo-spectral
method has the highest accuracy compared with the other
finite-difference schemes, such as the second-order central
differencing scheme used in SIMUL and GENTRANS, sixth-
order compact scheme used in SPRESSO, and finite element
method used in COMSOL. Therefore, the SPYCE simulator
based on the Chebyshev pseudo-spectral method on adaptive
grid offers the highest numerical accuracy among all the elec-
trophoresis simulators.
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